2 2 N ov 2 01 2 Projective Dirac operators , twisted K - theory , and local index formula ∗

نویسنده

  • Dapeng Zhang
چکیده

We construct a canonical noncommutative spectral triple for every oriented closed Riemannian manifold, which represents the fundamental class in the twisted K-homology of the manifold. This so-called “projective spectral triple” is Morita equivalent to the well-known commutative spin spectral triple provided that the manifold is spin-c. We give an explicit local formula for the twisted Chern character for K-theories twisted with torsion classes, and with this formula we show that the twisted Chern character of the projective spectral triple is identical to the Poincaré dual of the A-hat genus of the manifold. Mathematics Subject Classification (2010). 19K56, 19L50, 58J20.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Noncommutative Residue for Projective Pseudodifferential Operators

A well known result on pseudodifferential operators states that the noncommutative residue (Wodzicki residue) of a pseudodifferential projection vanishes. This statement is non-local and implies the regularity of the eta invariant at zero of Dirac type operators. We prove that in a filtered algebra the value of a projection under any residual trace depends only on the principal part of the proj...

متن کامل

Fractional Analytic Index

For a finite rank projective bundle over a compact manifold, so associated to a torsion, Dixmier-Douady, 3-class, w, on the manifold, we define the ring of differential operators ‘acting on sections of the bundle’ in a formal sense. In particular any oriented even-dimensional manifold carries a projective spin Dirac operator in this sense. More generally the corresponding space of pseudodiffere...

متن کامل

Equivariant Verlinde formula from fivebranes and vortices

We study complex Chern-Simons theory on a Seifert manifold M3 by embedding it into string theory. We show that complex Chern-Simons theory on M3 is equivalent to a topologically twisted supersymmetric theory and its partition function can be naturally regularized by turning on a mass parameter. We find that the dimensional reduction of this theory to 2d gives the low energy dynamics of vortices...

متن کامل

The Atiyah-patodi-singer Index Theorem for Dirac Operators over C∗-algebras

We prove an Atiyah-Patodi-Singer index theorem for Dirac operators twisted by C-vector bundles. We use it to derive a general product formula for η-forms and to define and study new ρ-invariants generalizing Lott’s higher ρ-form. The higher Atiyah-Patodi-Singer index theorem of LeichtnamPiazza can be recovered by applying the theorem to Dirac operators twisted by the Mishenko-Fomenko bundle ass...

متن کامل

Twisted Index Theory on Good Orbifolds, I: Noncommutative Bloch Theory

We study the twisted index theory of elliptic operators on orbifold covering spaces of compact good orbifolds, which are invariant under a projective action of the orbifold fundamental group. We apply these results to obtain qualitative results on real and complex hyperbolic spaces in 2 and 4 dimensions, related to generalizations of the Bethe-Sommerfeld conjecture and the Ten Martini Problem, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012